HESA

Higher Education Strategy Associates

Student/Graduate Survey Data

This is my last thought on data for awhile, I promise.  But I want to talk a little bit today about what we’re doing wrong with the increasing misuse of student and graduate surveys.

Back about 15 years ago, the relevant technology for email surveys became sufficiently cheap and ubiquitous that everyone started using them.  I mean, everyone.  So what has happened over the last decade and a half has been a proliferation of surveys and with it – surprise, surprise – a steady decline in survey response rates.  We know that these low-participation surveys (nearly all are below 50%, and most are below 35%) are reliable, in the sense that they give us similar results year after year.  But we have no idea whether they are accurate, because we have no way of dealing with response bias.

Now, every once in awhile you get someone with the cockamamie idea that the way to deal with low response rates is to expand the sample.  Remember how we all laughed at Tony Clement when he claimed  the (voluntary) National Household Survey would be better than the (mandatory) Long-Form Census because the sample size would be larger?  Fun times.  But this is effectively what governments do when they decide – as the Ontario government did in the case of its sexual assault survey  – to carry out what amounts to a (voluntary) student census.

So we have a problem: even as we want to make policy on a more data-informed basis, we face the problem that the quality of student data is decreasing (this also goes for graduate surveys, but I’ll come back to those in a second).  Fortunately, there is an answer to this problem: interview fewer students, but pay them.

What every institution should do – and frankly what every government should do as well – is create a balanced, stratified panel of about 1000 students.   And it should pay them maybe $10/survey to complete surveys throughout the year.  That way, you’d have good response rates from a panel that actually represented the student body well, as opposed to the crapshoot which currently reigns.  Want accurate data on student satisfaction, library/IT usage, incidence of sexual assault/harassment?  This is the way to do it.  And you’d also be doing the rest of your student body a favour by not spamming them with questionnaires they don’t want.

(Costly?  Yes.  Good data ain’t free.  Institutions that care about good data will suck it up).

It’s a slightly different story for graduate surveys.  Here, you also have a problem of response rates, but with the caveat that at least as far as employment and income data is concerned, we aren’t going to have that problem for much longer.  You may be aware of Ross Finnie’s work  linking student data to tax data to work out long-term income paths.  An increasing number of institutions are now doing this, as indeed is Statistic Canada for future versions of its National Graduate Survey (I give Statscan hell, deservedly, but for this they deserve kudos).

So now that we’re going to have excellent, up-to-date data about employment and income data we can re-orient our whole approach to graduate surveys.  We can move away from attempted censuses with a couple of not totally convincing questions about employment and re-shape them into what they should be: much more qualitative explorations of graduate pathways.  Give me a stratified sample of 2000 graduates explaining in detail how they went from being a student to having a career (or not) three years later rather than asking 50,000 students a closed-ended question about whether their job is “related” to their education every day of the week.  The latter is a boring box-checking exercise: the former offers the potential for real understanding and improvement.

(And yeah, again: pay your survey respondents for their time.  The American Department of Education does it on their surveys and they get great data.)

Bottom line: We need to get serious about ending the Tony Clement-icization of student/graduate data. That means getting serious about constructing better samples, incentivizing participation, and asking better questions (particularly of graduates).  And there’s no time like the present. If anyone wants to get serious about this discussion, let me know: I’d be overjoyed to help.

This entry was posted in Data, PSE Outcomes and tagged , , . Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *

We encourage constructive debate. Therefore, all comments are moderated. While anonymous or pseudonymous comments are permitted, those that are inflammatory or disrespectful may be blocked.